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I. INTRODUCTION

Federated Learning [1] enables distributed devices to learn

a shared machine learning model together, without uploading

their private training data. It has received significant attention

recently and has been used in mobile applications such as

search suggestion [2] and object detection [3]. Federated

Learning is different from distributed machine learning due

to the following reasons: 1) System heterogeneity: federated

learning is usually performed on devices having highly dy-

namic and heterogeneous network, compute, and power avail-

ability. 2) Data heterogeneity (or statistical heterogeneity):
data is produced by different users on different devices, and

therefore may have different statistical distribution (non-IID).
Prior work has tried to address the challenges arising due to

system and data heterogeneity in federated learning [4]–[9]. As

an example, TiFL [4] selects the set of devices participating in

training in each iteration based on their computational speed

to accelerate training and mitigate straggler effect. The prior

work has mainly considered system heterogeneity in order

to achieve good system metrics (e.g. training speed, energy

consumption), without taking into account data heterogeneity

issues. Also, fault tolerance of devices has not been looked at.
In this work, we look at the impact of data heterogeneity in

selecting devices during training in federated learning, espe-

cially for edge devices. More specifically, we try to find answer

to the question: which subset of devices should be selected for

training in order to ensure high accuracy, while accelerating

training speed and achieving fault tolerance? To this end, we

conduct detailed experiments to simulate various scenarios for

selecting devices on MNIST, MNIST-Variations Dataset and

LEAF framework Our results indicate that federated learning is

quite robust to intermittent dropping of devices. Additionally,

the accuracy for a permanently dropped device will not drop

as long as its data distribution is represented by some other

devices participating in the training process. Based on these

results, we conclude that utilizing statistical metrics (along

with system metrics) can lead to significant improvement in

the performance and reliability in federated learning without

any loss in accuracy.

II. PRELIMINARY RESULTS

Datasets. We use two datasets. Each dataset has a different

type of data heterogeneity:
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• Data heterogeneity on class labels. In this case, different

devices have different distribution of class labels. For this,

we use MNIST dataset [10]. All the images are 28x28

pixels hand-writing numbers labeled from [0-9].

• Data heterogeneity within the same class. Here, differ-

ent devices have different data distribution for the same

class. For example, different user may write the same

hand-writing number with different style. For this, we

use MNIST Variations dataset [11], which has 5 different

styles for each number.

For each of the above mentioned heterogeneity, we partition

each dataset into 100 partitions. Each partition is assigned

to one client. We randomly select 20 clients from these 100

clients for each training epoch.
Testbed. We extend the distributed federated learning frame-

work LEAF [12] to simulate different drop patterns.
Model. We use the Convolutional Neural Network as in [12].

The overall accuracy is the average of the test accuracy on all

devices. Wherever required, we also measure the accuracy on

each device separately. We run the training for 1000 epochs.
We next look at the various scenarios for device selection.

A. Intermittent availability of devices
In a real environment, edge devices, like mobile phones,

may participate in training at the beginning but leave after

some epochs due to reasons such as lack of power supply,

network disconnection etc. We simulate this by dropping some

devices from some training epochs while ensuring that every

device has participated in at least one epoch.
We use MNIST dataset for evaluation. We adopt the setting

from [13] to ensure that each device contains data from at most

two classes. We drop out 0, 5 or 15 clients out of 20 clients in

each epoch, and plot the overall accuracy of the global model

on 100 clients after each training epoch in Fig. 1.
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Fig. 1: Accuracy of each epoch when devices drop

intermittently

Observation. In Fig. 1, we see that dropping devices inter-

mittently does not significantly impact the overall accuracy.
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During the initial phases of training, there is more variation in

the accuracy for scenarios where the devices are dropped. But

as the training progresses, the variation continues to reduce,

eventually becoming insignificant.

Conclusion. This result shows that federated learning is robust

to intermittent dropping of devices. Hence, we may not need

specially designed fault tolerance policy for such cases.

B. Permanent dropping of devices

In real environments, due to system heterogeneity, some

devices might be significantly slower than others. Therefore,

existing systems such as TiFL [4] partition and select devices

based on system metrics (e.g. training speed). It is possible that

the slower devices may not get any opportunity to participate

in training. To simulate this scenario, we pre-select the set

of devices which can participate in the training. Then, in

each training epoch, we only select the devices from this

pre-selected set. Effectively, this leads to some devices not

participating in the entire training.

1) Data heterogeneity on class labels: We adopt the setting

from [13] to partition 100 clients to 10 groups. Each group

contains 10 clients and will be assigned 2 classes. We ensure

that a device in any group will have training data only from

the 2 classes assigned to that group as shown in Table I. We

implement two dropping policies: 1) randomly pre-select some

clients to drop 2) pre-select an entire group of devices to drop.

For each policy, we drop 80 out of 100 devices, and measure

the accuracy of trained global model on the local test dataset

of each device. The results are shown in Fig. 2.

TABLE I: Partition of training data on 100 devices

Device Group No. 0 1 2 3 4
Classes 6,7 1,4 5,9 2,3 0,4

Device Group No. 5 6 7 8 9
Classes 2,5 6,8 0,9 7,8 1,3
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Fig. 2: Top: Devices are randomly dropped permanently

Bottom: Drop entire groups of devices permanently

Observation. In Fig. 2 Top, there is no drop in accuracy for

any group. We conclude that if at least one client from each

group participates in training, the accuracy of all devices in

this group can be guaranteed. In Fig. 2 Bottom, we see that

the groups which have been dropped completely experience a

significant drop in accuracy. The accuracy drop for dropped

groups which have some of their class labels in participating

groups is less as compared to the groups whose class labels

are not present in any of the participating groups.
2) Data heterogeneity within the class labels: We further

consider data heterogeneity within the same class. In this

experiment, we partition 100 clients to 5 groups. Each group

contains 20 clients. All devices have all the class labels but

the devices are grouped by different image styles from MNIST

Variations Dataset (See Table II).

TABLE II: Partition of training data on 100 devices

Device
Group No.

0 1 2 3 4

Style basic
MNIST

Rotated
MNIST
+ back-
ground
images

MNIST
+ back-
ground
images

Rotated
MNIST

MNIST
+
random
back-
ground

Observation. We dropped 90 clients, and only leave 10 clients

from basic MNIST group. The evaluation result is shown

in Fig. 3. The result shows that only the basic MNIST

group achieved good accuracy while other groups experience

varying drops in accuracy. We conclude that data heterogeneity

within the same class label have similar impact as previous

experiments.
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Fig. 3: Average accuracy and participation rate of each group

Conclusion. The accuracy for a permanently dropped device

will not drop as long as its data distribution is represented by

some other devices participating in the training process.

III. CONCLUSION AND PROPOSED SOLUTIONS

In this work, we discuss the impact of data heterogeneity

in federated learning. Our findings are as follows:

• Dropping clients intermittently (devices participating only

in some epochs) will not decrease the accuracy.

• Dropping clients permanently might decrease the overall

accuracy of the global model. That depends on the data

heterogeneity of training data on different devices.

Based on these findings, we propose the following:

• Partition the devices such that the devices in each parti-

tion have similar data distribution (identified from prior

training cycles). Then select the fastest devices from each

partition for each training round, or give higher selection

priority to fastest devices. This will improve the training

speed without any compromise in accuracy.

• Reliable devices (i.e. devices that drop less frequently)

having similar data distribution as that of less reliable

devices, should be given higher selection priority for

training.
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