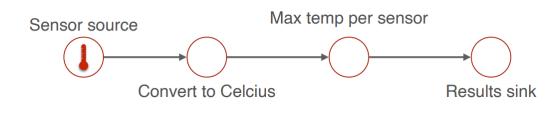
The Non-Expert Tax: Quantifying the cost of auto-scaling in Cloud-based data stream analytics

Yuanli Wang, Baiqing Lyu, Vasiliki Kalavri

yuanliw@bu.edu

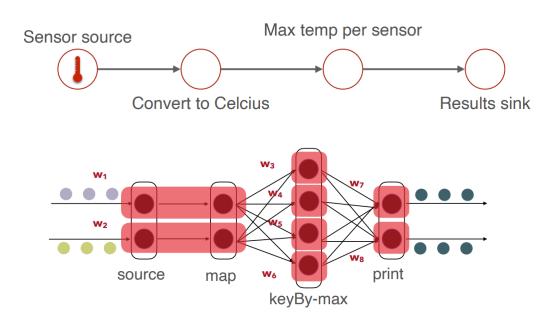
https://sites.bu.edu/casp/


You are overpaying for your streaming services

• We conducted an empirical study of auto-scaling of major providers and found that...

You are overpaying for your streaming services

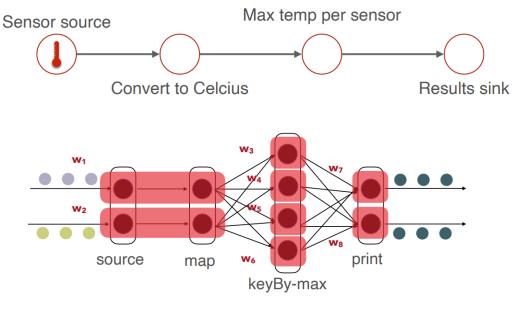
- We conducted an empirical study of auto-scaling of major providers and found that...
- Users are over-charged on under-utilized resources
 - Up to 544% for short-term jobs
 - Up to 332% per month for periodic workloads
- Can not accurately identify bottlenecks even after more than 1h
 - Can not achieve target input rate


Dataflow stream processing

Logical Dataflow

- Streaming dataflow programs describing business logic
- Vertices: operators
- Edges: data dependencies

Dataflow stream processing

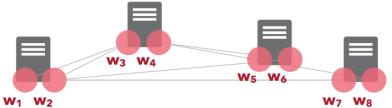

Logical Dataflow

- Streaming dataflow programs describing business logic
- Vertices: operators
- Edges: data dependencies

Physical Dataflow

• Decide parallelism of each operator

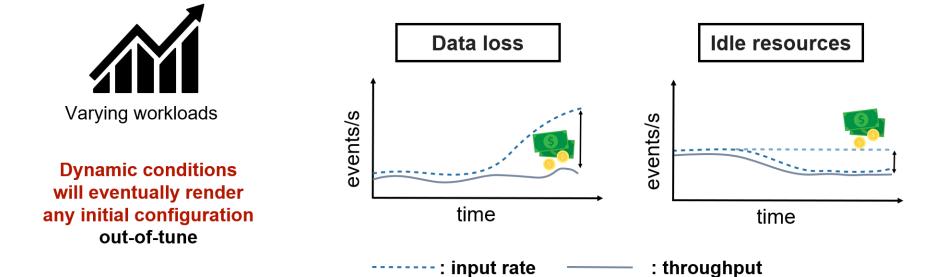
Dataflow stream processing

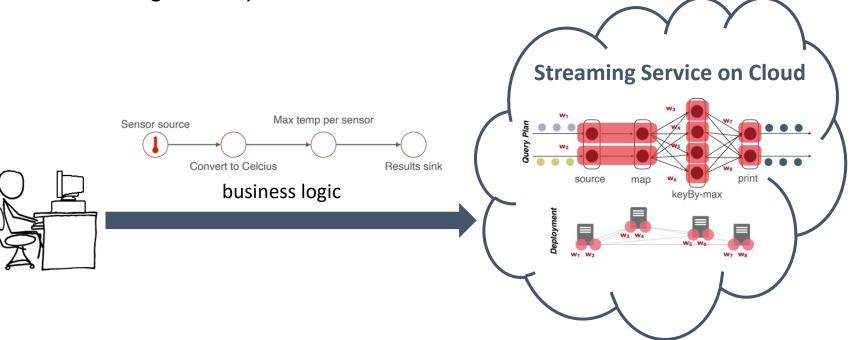


Logical Dataflow

- Streaming dataflow programs describing business logic
- Vertices: operators
- Edges: data dependencies

Physical Dataflow


• Decide parallelism of each operator


Deployment

• Assign tasks to workers

Main Challenge: Workloads are dynamic and often unpredictable

- Enable non-expert users to run stream processing jobs
 - Users submit their business logic
 - The Cloud-hosted service automatically allocates and adjusts resources according to the dynamic workload.

Google Dataflow

Azure Stream Analytics

C-) Alibaba Cloud

Realtime Compute for Apache Flink

Google Dataflow

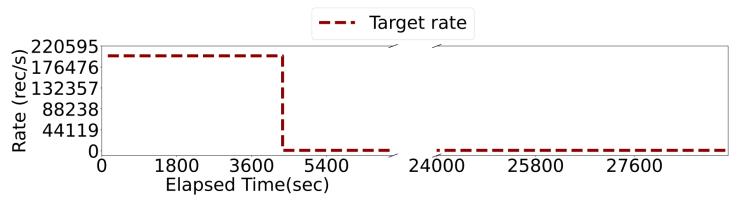
The cost-benefit trade-off of automatic scaling in cloudhosted data stream services is not well understood

Azure Stream Analytics

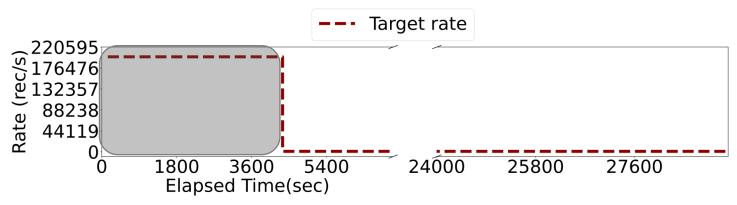
C-) Alibaba Cloud

Realtime Compute for Apache Flink

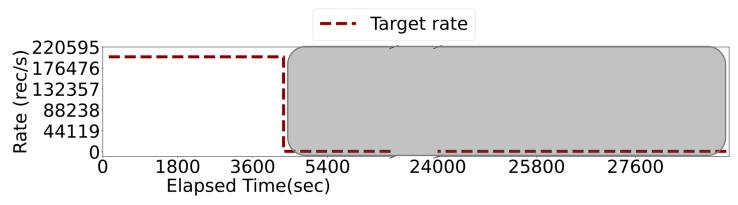
	AWS Kinesis Data Analytics	Google Cloud Dataflow	Microsoft Azure Stream Analytics	Alibaba Realtime Compute
Policy	Heuristic	Heuristic and predictive	Heuristic	Heuristic
Metrics	CPU utilization	CPU utilization and backlog	User-defined	CPU/memory utilization, Latency
Scale-out interval	15 min	10 minutes	User-defined	6 min
Scale-down interval	6 hours	10 minutes	User-defined	24 hours

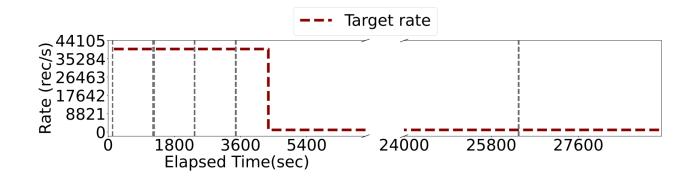

	AWS Kinesis Data Analytics	Google Cloud Dataflow	Microsoft Azure Stream Analytics	Alibaba Realtime Compute	
Policy	Heuristic	Heuristic and predictive	Heuristic	Heuristic	
Metrics	CPU utilization	CPU utilization and backlog	User-defined	CPU/memory utilization, Latency	
Scale-out interval	15 min	10 minutes	User-defined	6 min	
Scale-down interval	6 hours	10 minutes	User-defined	24 hours	

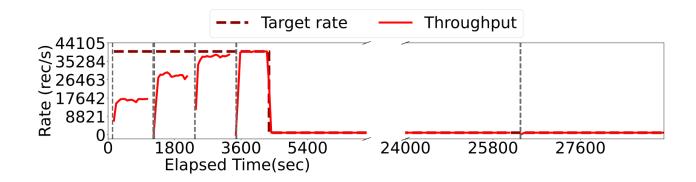
	AWS Kinesis Data Analytics	Google Cloud Dataflow	Microsoft Azure Stream Analytics	Alibaba Realtime Compute
Policy	Heuristic	Heuristic and predictive	Heuristic	Heuristic
Metrics	CPU utilization	CPU utilization and backlog	User-defined	CPU/memory utilization, Latency
Scale-out interval	15 min	10 minutes	User-defined	6 min
Scale-down interval	6 hours	10 minutes	User-defined	24 hours

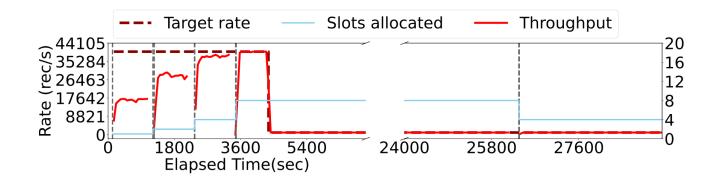

	AWS Kinesis Data Analytics	Google Cloud Dataflow	Microsoft Azure Stream Analytics	Alibaba Realtime Compute	
Policy	Heuristic	Heuristic and predictive	Heuristic	Heuristic	
Metrics	CPU utilization	CPU utilization and backlog	User-defined	CPU/memory utilization, Latency	
Scale-out interval	15 min	10 minutes	User-defined	6 min	
Scale-down interval	6 hours	10 minutes	User-defined	24 hours	

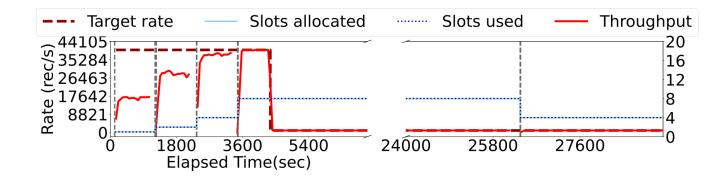
	AWS Kinesis Data Analytics	Google Cloud Dataflow	Microsoft Azure Stream Analytics	Alibaba Realtime Compute
Policy	Heuristic	Heuristic and predictive	Heuristic	Heuristic
Metrics	CPU utilization	CPU utilization and backlog	User-defined	CPU/memory utilization, Latency
Scale-out interval	15 min	10 minutes	User-defined	6 min
Scale-down interval	6 hours	10 minutes	User-defined	24 hours

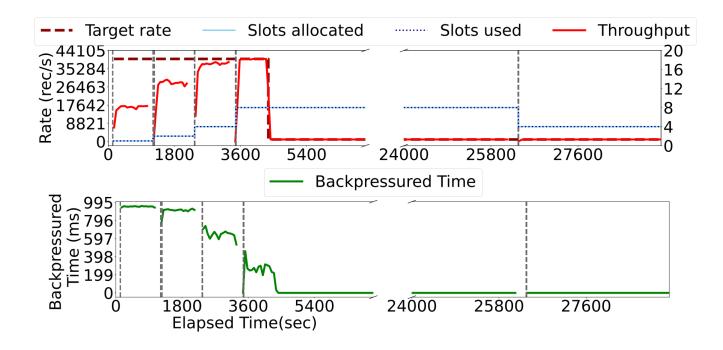

- Workload
 - Nexmark Queries with various operators and state characteristics
 - Dynamic input rate

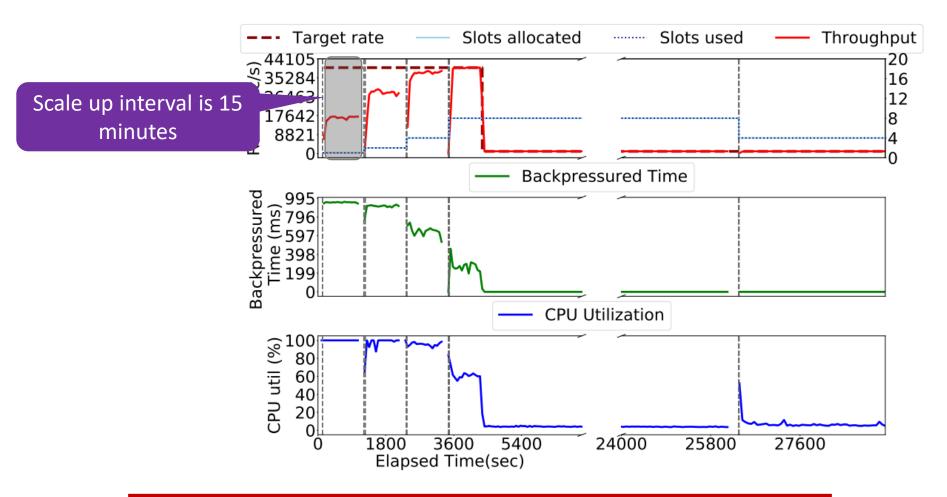

- Workload
 - Nexmark Queries with various operators and state characteristics
 - Dynamic input rate

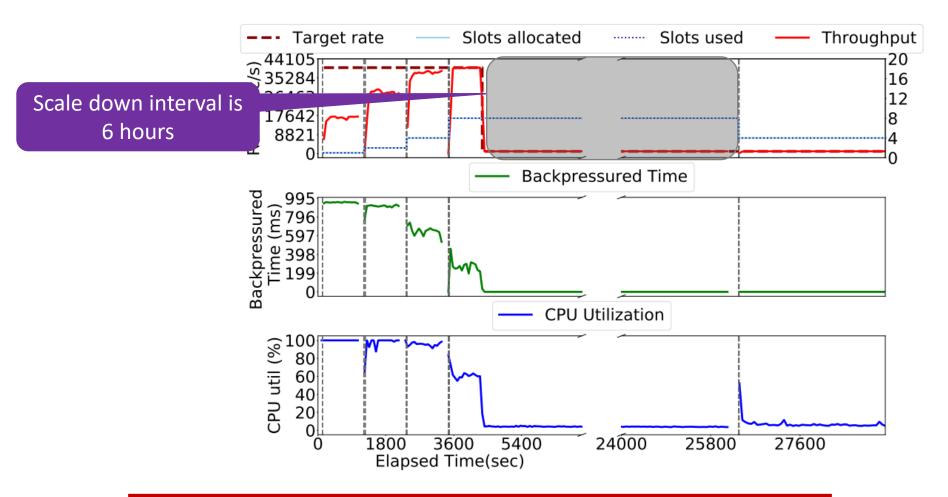


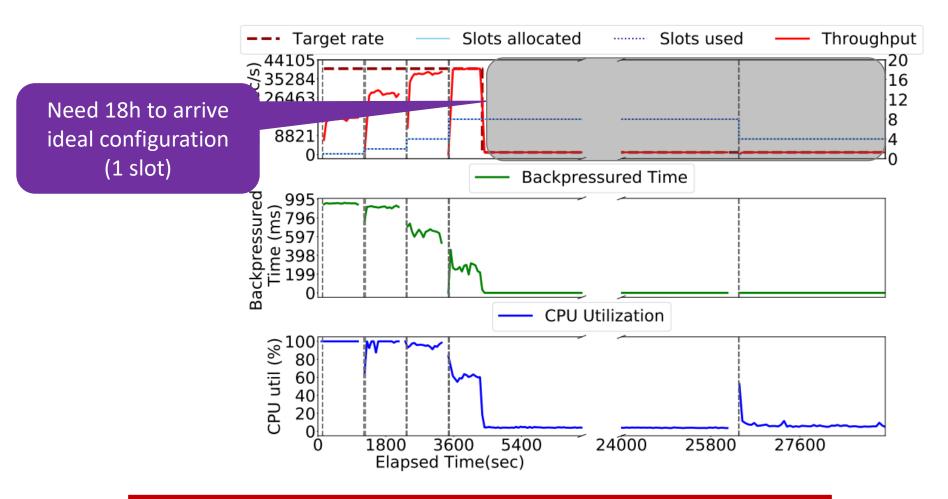

- Workload
 - Nexmark Queries with various operators and state characteristics
 - Dynamic input rate

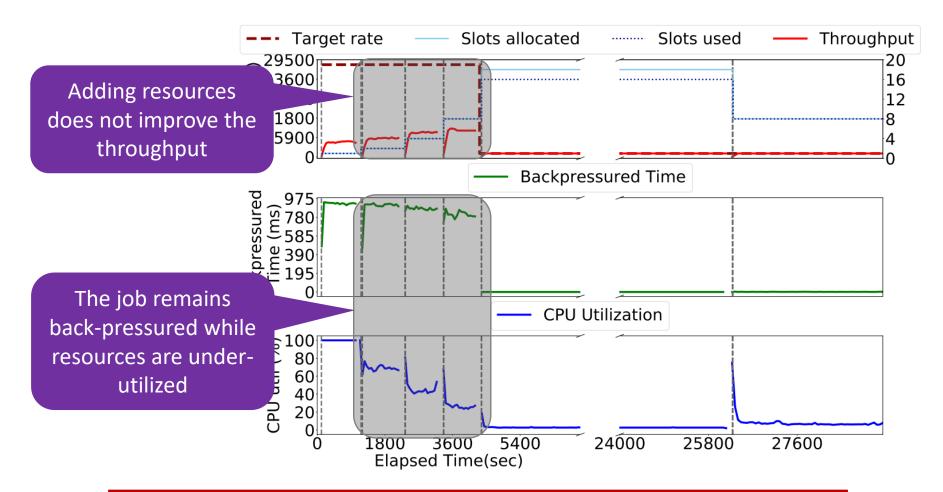


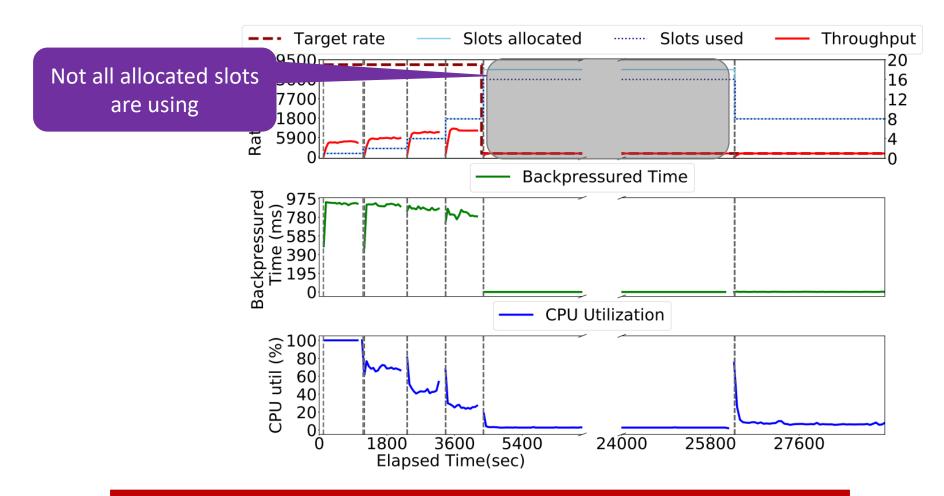

- Metrics
 - Throughput
 - backpressured time
 - CPU utilization
 - backlog (for Google Dataflow)

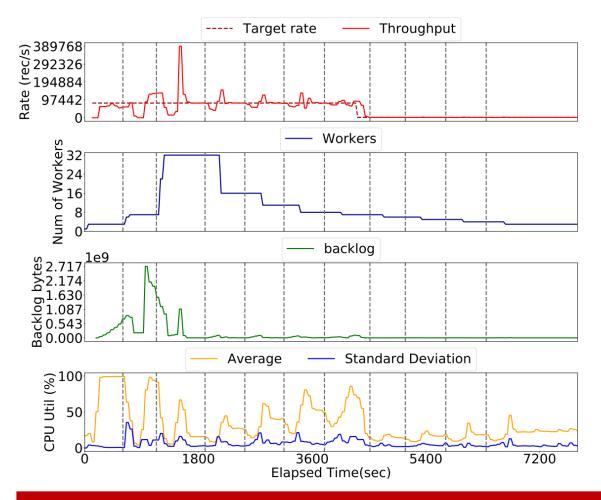


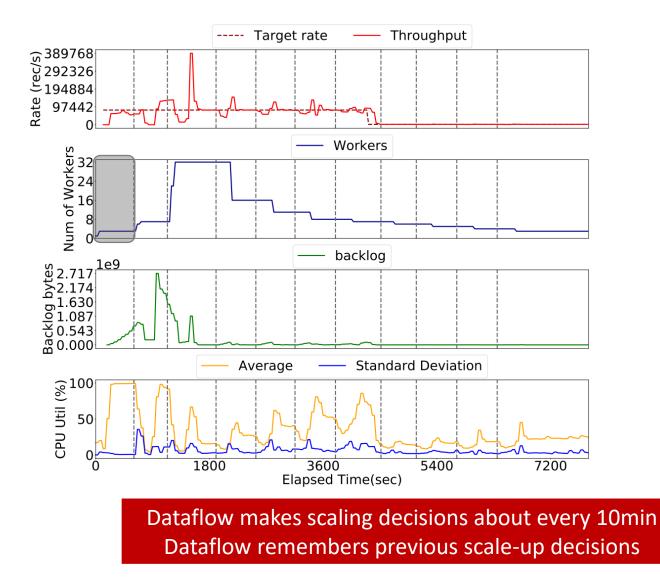


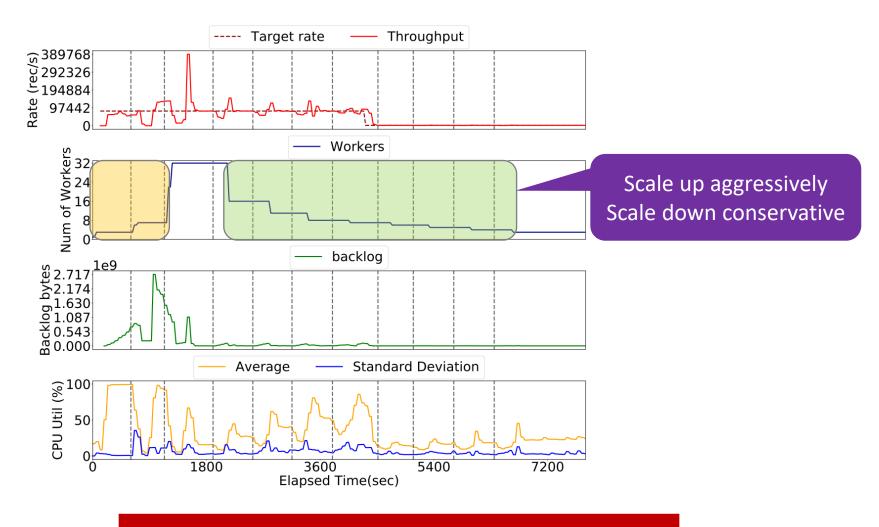



Aggressive scale-up. Conservative and slow scale-down Users might be considerably over-charged for underutilized resources


Aggressive scale-up. Conservative and slow scale-down Users might be considerably over-charged for underutilized resources

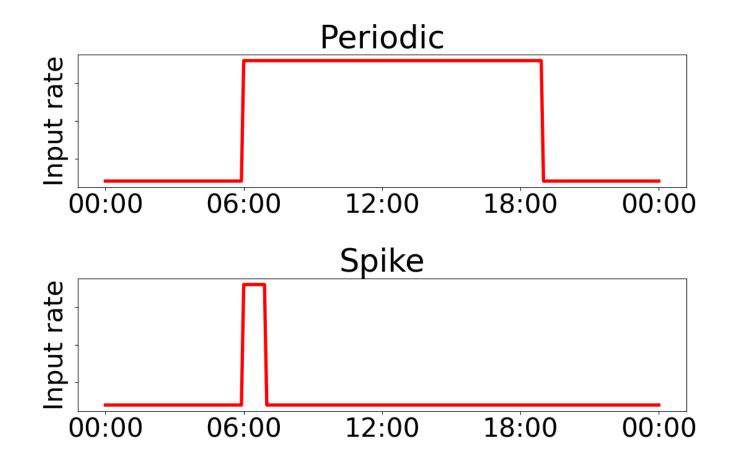

Aggressive scale-up. Conservative and slow scale-down Users might be considerably over-charged for underutilized resources


NEXMark Q8 on Amazon Kinesis Data Analytics with auto-scaling enabled Kinesis is not always capable of accurately identifying bottlenecks



NEXMark Q8 on Amazon Kinesis Data Analytics with auto-scaling enabled Kinesis is not always capable of accurately identifying bottlenecks

NEXMark Q5 on Google Dataflow with maximum number of workers==32 1h10min high input rate, 7h low input rate



The scale-up and down policies are asymmetric

The Non-Expert Tax

- A configuration is **ideal** if:
 - it can keep up with the target rate without inducing backpressure or backlog, while using the minimum amount of resources.
- Non-Expert Tax: relative error between the expected cost under ideal configuration and the actual cost charged by the Cloud provider

Non_Expert Tax = $\frac{actual_cost - expected_cost}{expected_cost}$

		Experiment workload (per query)			Peri	Periodic workload for a month				Spike workload for a month		
		Actual	Ideal	Non-Expert	Actu	al	Ideal	Non-Expert	Actual	Ideal	Non-Expert	
		Cost (\$)	Cost (\$)	Tax (%)	Cost	(\$)	Cost (\$)	Tax (%)	Cost (\$)	Cost (\$)	Tax (%)	
s	Q1	13.98	2.17	544.23	125	2.7	289.8	332.26	419.55	173.97	141.16	
esis	Q3	13.98	2.87	387.1	125	2.7	542.52	130.90	419.55	195.03	115.12	
Kin	Q5	7.9	2.64	199.24	666	.77	458.28	45.49	419.55	188.01	123.15	
¥	Q8	13.98	2.87	387.1	125	2.7	542.52	130.90	419.55	195.03	115.12	
3	Q1	2.68	1.06	152.83	275	.03	190.08	44.69	206.3	73.92	179.09	
flo	Q3	6.68	2.21	202.26	64	2.8	428.4	50.05	425.88	147.9	187.95	
Dataflow	Q5	6.16	2.04	201.96	58	6.9	367.2	59.83	425.85	142.8	198.21	
Ä	Q8	8.04	3.91	105.63	1209	.55	1040.4	16.26	464.24	198.9	133.40	

*These results do not provide a reliable way to compare Kinesis with Dataflow in terms of cost. The services were evaluated using different input rates and instance types.

Table 3: Actual cost, ideal cost, and incurred Non-Expert Tax for the Nexmark queries in three workload scenarios.

		Experiment workload (per query)			Per	Periodic workload for a month				Spike workload for a month		
		Actual	Ideal	Non-Expert	Act	ual	Ideal	Non-Expert	Actual	Ideal	Non-Expert	
		Cost (\$)	Cost (\$)	Tax (%)	Cos	t (\$)	Cost (\$)	Tax (%)	Cost (\$)	Cost (\$)	Tax (%)	
s	Q1	13.98	2.17	544.23	12	52.7	289.8	332.26	419.55	173.97	141.16	
esis	Q3	13.98	2.87	387.1	12	52.7	542.52	130.90	419.55	195.03	115.12	
Kin	Q5	7.9	2.64	199.24	66	6.77	458.28	45.49	419.55	188.01	123.15	
–	Q8	13.98	2.87	387.1	12	52.7	542.52	130.90	419.55	195.03	115.12	
3	Q1	2.68	1.06	152.83	27	5.03	190.08	44.69	206.3	73.92	179.09	
flo	Q3	6.68	2.21	202.26	6	42.8	428.4	50.05	425.88	147.9	187.95	
Dataflo	Q5	6.16	2.04	201.96	5	86.9	367.2	59.83	425.85	142.8	198.21	
ñ	Q8	8.04	3.91	105.63	120	9.55	1040.4	16.26	464.24	198.9	133.40	

*These results do not provide a reliable way to compare Kinesis with Dataflow in terms of cost. The services were evaluated using different input rates and instance types.

Table 3: Actual cost, ideal cost, and incurred Non-Expert Tax for the Nexmark queries in three workload scenarios.

Over 300% Non-Expert-Tax per month for periodic workloads Over 500% Non-Expert-Tax for short-term jobs

		Experim	ent worklo	ad (per query)	Period	lic workload	l for a month	Spike workload for a month		
		Actual	Ideal	Non-Expert	Actual	Ideal	Non-Expert	Actual	Ideal	Non-Expert
		Cost (\$)	Cost (\$)	Tax (%)	Cost (\$) Cost (\$)	Tax (%)	Cost (\$)	Cost (\$)	Tax (%)
s	Q1	13.98	2.17	544.23	1252.	7 289.8	332.26	419.55	173.97	141.16
esis	Q3	13.98	2.87	387.1	1252.	7 542.52	130.90	419.55	195.03	115.12
Kin	Q5	7.9	2.64	199.24	666.7	7 458.28	45.49	419.55	188.01	123.15
×	Q8	13.98	2.87	387.1	1252.	7 542.52	130.90	419.55	195.03	115.12
3	Q1	2.68	1.06	152.83	275.03	3 190.08	44.69	206.3	73.92	179.09
flo	Q3	6.68	2.21	202.26	642.	8 428.4	50.05	425.88	147.9	187.95
Dataflo	Q5	6.16	2.04	201.96	586.9	9 367.2	59.83	425.85	142.8	198.21
ñ	Q8	8.04	3.91	105.63	1209.5	5 1040.4	16.26	464.24	198.9	133.40

*These results do not provide a reliable way to compare Kinesis with Dataflow in terms of cost. The services were evaluated using different input rates and instance types.

Table 3: Actual cost, ideal cost, and incurred Non-Expert Tax for the Nexmark queries in three workload scenarios.

The Kinesis Non-Expert Tax is higher for periodic workload

		Experim	ent worklo	ad (per query)	Periodic	workload	for a month	Spike workload for a month		
		Actual	Ideal	Non-Expert	Actual	Ideal	Non-Expert	Actual	Ideal	Non-Expert
		Cost (\$)	Cost (\$)	Tax (%)	Cost (\$)	Cost (\$)	Tax (%)	Cost (\$)	Cost (\$)	Tax (%)
s	Q1	13.98	2.17	544.23	1252.7	289.8	332.26	419.55	173.97	141.16
esi	Q3	13.98	2.87	387.1	1252.7	542.52	130.90	419.55	195.03	115.12
Kinesis	Q5	7.9	2.64	199.24	666.77	458.28	45.49	419.55	188.01	123.15
¥	Q8	13.98	2.87	387.1	1252.7	542.52	130.90	419.55	195.03	115.12
3	Q1	2.68	1.06	152.83	275.03	190.08	44.69	206.3	73.92	179.09
flo	Q3	6.68	2.21	202.26	642.8	428.4	50.05	425.88	147.9	187.95
Dataflow	Q5	6.16	2.04	201.96	586.9	367.2	59.83	425.85	142.8	198.21
Ä	Q8	8.04	3.91	105.63	1209.55	1040.4	16.26	464.24	198.9	133.40

*These results do not provide a reliable way to compare Kinesis with Dataflow in terms of cost. The services were evaluated using different input rates and instance types.

Table 3: Actual cost, ideal cost, and incurred Non-Expert Tax for the Nexmark queries in three workload scenarios.

Up to 200% Non-Expert-Tax

These services are not easy to use, even by experts

- User input is required to achieve good performance or avoid failures
- User settings might conflict with policy decisions and silently cause unexpected behavior.
- Sometimes documents are inaccurate/incomplete.

Conclusion

There is large room for improving the **cost** and **resource efficiency** of Cloud-hosted streaming analytics services

- Over-charge users on under-utilized resources.
- Cannot accurately identify bottlenecks.
- Not easy to use.

Conclusion

There is large room for improving the **cost** and **resource efficiency** of Cloud-hosted streaming analytics services

- Over-charge users on under-utilized resources.
- Cannot accurately identify bottlenecks.
- Not easy to use.

Yuanli Wang, Baiqing Lyu, Vasiliki Kalavri yuanliw@bu.edu https://sites.bu.edu/casp/

